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Dynamical properties of lattice systems with long-range pair interactions, decaying like 1=r� with the

distance r, are investigated, in particular the time scales governing the relaxation to equilibrium. Upon

varying the interaction range �, we find evidence for the existence of a threshold at � ¼ d=2, dependent

on the spatial dimension d, at which the relaxation behavior changes qualitatively and the corresponding

scaling exponents switch to a different regime. Based on analytical as well as numerical observations in

systems of vastly differing nature, ranging from quantum to classical, from ferromagnetic to antiferro-

magnetic, and including a variety of lattice structures, we conjecture this threshold and some of its

characteristic properties to be universal.
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Most lattice models studied in condensed matter
physics have interactions of finite range. Despite the
long-range character of the fundamental electromagnetic
interactions, the presence of positive and negative charges
gives rise to screening effects that cause interactions to
be effectively short range and justify an approximation
by finite-range (and often even nearest-neighbor) interac-
tions. But a finite-range approximation is not always
justified. One obvious example are astrophysical systems
dominated by gravitational interactions where screening
does not occur. Historically, it was in this context
that several of the anomalies of long-range interacting
systems were first discussed, for example negative heat
capacities of bounded self-gravitating gas spheres [1].
In subsequent decades, a general interest in fundamental
issues of statistical physics of long-range interacting
systems arose [2].

Technically, interactions of finite range turn out to be
convenient: Exact solutions of many-body models, rare as
they are, are in most cases restricted to finite-range inter-
actions, and also general theorems in thermostatistical
physics (like the convexity properties of thermodynamic
functions) are often proved under the assumption of short-
range interactions [3]. ‘‘Short range’’ here refers not only
to interactions of finite range, but also to those decaying
like 1=r� with the distance r and an exponent � larger
than the spatial dimension d of the system. And indeed,
various long-range systems, i.e., those with exponents
�< d, have been found to violate ensemble equivalence,
have negative microcanonical specific heat, and other
peculiarities [2].

Out of equilibrium, an intriguing and physically rele-
vant phenomenon that has been observed in long-range
systems is the existence of quasistationary states. These
are nonequilibrium states whose lifetimes � diverge with

increasing system size N. As a result, for a sufficiently
large system, relaxation to equilibrium takes place on a
time scale that is larger than any realistic observation time.
Such behavior has been reported for various long-range
systems, ranging from classical toy models with mean-field
interactions to gravitating systems [4]. The exponent �
in these studies is usually kept fixed—either at � ¼ 0
(corresponding to mean-field interactions) where analyti-
cal calculations are easier, or at some integer number in
order to account for classical gravity.
In this Letter we investigate the relaxation to equilib-

rium of lattice systems with long-range pair interactions,
and in particular the � dependence of the relaxation
times. We report analytical as well as numerical results
on several classes, containing systems of vastly differing
nature. For all lattice structures studied, and regardless
of whether the systems are quantum or classical, we
observe, at a threshold value of � ¼ d=2, a drastic change
of the relaxational dynamics. In particular, the exponent

qð�Þ, governing the scaling � / Nqð�Þ of the relaxation
time �, switches from one regime to another at � ¼ d=2.
Certain qualitative aspects of the scaling laws also appear
to be universal, as summarized in Figs. 1 and 3. Note that
the threshold value � ¼ d=2 that is relevant for non-
equilibrium phenomena differs from the one at � ¼ d
commonly used for distinguishing between long- and
short-range behavior in equilibrium statistical mechanics.
Other aspects of the dynamics are evidently nonuniversal,
even to the point that relaxation in some systems may
slow down with increasing system size, but accelerate in
others.
This Letter aims at furthering the understanding of

fundamental aspects of nonequilibrium statistical mechan-
ics of long-range interacting systems. In particular, the
mechanism of relaxation in long-range interacting systems,
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but also many aspects of its phenomenology, are still only
poorly understood. Identifying universal properties and
threshold values may give valuable clues and deepen the
general understanding. On the more applied side, recent
developments have made long-range interacting systems
accessible in the laboratory, and an experimental verifi-
cation of some of our results should be feasible [5].
Particularly promising for such a check is an ion-trap-
based quantum simulator as reported by Britton et al. [6].
In this setup, a quantum long-range Ising model is emu-
lated, and the exponent � governing the interaction range
can be tuned between 0 and 3.

Long-range quantum Ising model.—The first class of
models we are studying consists of spin-1=2 degrees of
freedom on the N sites of a lattice �, governed by the
Hamiltonian operator

H� ¼ � J

2

X

i;j2�
i�j

�z
i�

z
j

ji� jj� � h
X

i2�

�z
i : (1)

Here, �z is the z component of the Pauli spin operator, h is
an external magnetic field, ji� jj denotes the Euclidean
distance of sites i and j, and the exponent �> 0 determines
the interaction range. Depending on the sign of the coupling
J, the spin—spin interactions are ferromagnetic (J > 0)
or antiferromagnetic (J < 0). On certain lattices (e.g., a
triangular lattice), antiferromagnetic interactions result in
geometrical frustration. An important difference to a similar
model considered in Ref. [7] is the absence of an
N-dependent normalization factor in front of the first sum in
(1), introduced in Ref. [7] to ensure extensivity of the energy.
Wewill comment on the role of the factor later in this Letter.
The expectation value hAi of an observable A is given by

Tr½A�ðtÞ�, where the time evolution of the density operator
� is governed by the von Neumann equation. For all initial
density operators �0 that are diagonal in the �x tensor
product eigenbasis, the time evolution of single-spin
observables can be computed analytically in arbitrary
spatial dimension, yielding

h�x
i iðtÞ ¼ h�x

i ið0Þ cosð2htÞ
Y
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j�i
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�
2Jt

ji� jj�
�

(2)

(see Supplemental Material A [8]). For all finite lattices �,
(2) is a quasiperiodic function. Proper relaxation to equi-
librium can be observed in the thermodynamic limit of
infinite lattice size, where using techniques analogous to
those in Refs. [7,9,10], we obtain
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8
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for �> d=2;
(3)

valid for large N and t (see Supplemental Material B [8]).
This result differs from the one reported in Ref. [7] in
a nontrivial way. This is a consequence of the absence
of the above-mentioned N-dependent normalization in
the Hamiltonian (1), which essentially corresponds to
taking the limits of large N and t in a different way.
The functional form of the upper bounds in (3) indeed
correctly reflects the behavior of jh�x

i iðtÞj, i.e., the powers
of N and t in the exponent agree excellently with a
numerical evaluation of (2) for large N, and only the
numerical constants are, as expected, overestimated
(Supplemental Material B [8]).

From Eq. (3) it follows that a change of regime takes
place at � ¼ d=2. For �< d=2, relaxation to equilibrium
is Gaussian in time, and the corresponding relaxation time

� scales like � / N�=d�1=2, shrinking to zero in the limit
of large N. For �> d=2, relaxation is governed by a

compressed or stretched exponential in t, with a relaxation
time that is constant asymptotically for large N. These
scaling laws are summarized in Fig. 1 (left). The threshold
at � ¼ d=2 suggests the following interpretation: Only for
�< d=2 are the pair interactions sufficiently long-range
such that the relaxation dynamics of a single spin is
directly influenced, and thereby sped up, by the presence
of OðNÞ spins. Analytical calculations of spin—spin cor-
relation functions indicate that further significant qualita-
tive and quantitative changes occur in other dynamical
quantities [10]. Interestingly, this dynamical long-range
threshold differs from the equilibrium threshold at � ¼ d
below which peculiar long-range behavior, like nonequi-
valence of ensembles or negative specific heat, may occur
in equilibrium statistical physics.
�XY chain.—This model, introduced in Ref. [11], con-

sists of classical XY spins attached to the sites i of a
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FIG. 1 (color online). The exponent q of the scaling law � /
Nq that governs the system-size dependence of the relaxation
time �. Left: For the long-range quantum Ising model (1) the
exponent q¼minf0;�=d�1=2g follows from the bounds in (3).
Right: For the �XY chain (4). The crosses mark data points,
obtained by a scaling analysis as in Fig. 2. The line is plotted as a
guide for the eye, indicating two distinct linear regimes with a
crossover at �=d � 0:44.
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one-dimensional chain and parametrized by the angular
variables �i. The time evolution is generated, via
Hamilton’s equations, by the Hamiltonian function

Hðp;�Þ ¼ XN

i¼1

p2
i

2
� J

2

XN

i;j¼1
i�j

cosð�i ��jÞ
ji� jj� ; (4)

where � ¼ ð�1; . . . ; �NÞ is the vector of angle variables
and p ¼ ðp1; . . . ; pNÞ the vector of conjugate momenta.
For � ¼ 0, and besides a normalization factor 1=N in front
of the second sum, Eq. (4) reduces to the much studied
Hamiltonian Mean-Field model [4], a model known to
display many of the peculiarities of long-range interacting
systems. In particular, relaxation to equilibrium has been
studied extensively, and the occurrence of quasistationary
states was observed for large classes of initial conditions
[12]. In equilibrium and for exponents 0 � �< 1, the
model (4) shows a transition from a magnetized phase at
energy densities e ¼ E=N < J=4 to an unmagnetized
phase for e > J=4 [13].

Initially we prepare the system in so-called waterbag
initial distributions, with initial angles�i drawn from a flat
distribution, and initial momenta taking random values in
the symmetric interval [� �, þ�] with some �> 0; the
average energy per particle is then e ¼ �2=6. The time
evolution is investigated by numerically integrating the
Hamiltonian equations of motion, using a sixth-order sym-
plectic integrator [14]. In earlier studies of the � ¼ 0 case,
the magnetizationm had been monitored over time in order
to observe relaxation to equilibrium [15]. This approach
is not viable above the critical energy ec ¼ 1=4 where the
initial and the equilibrium value of m are both close to
zero. For that reason, we monitor the time evolution of the
kurtosis of the momentum distribution, � ¼ hp4i=hp2i2,
where the angular brackets denote averages over the
lattice. The kurtosis of the waterbag initial states we are
using is �0 ¼ 9=5, whereas the Boltzmann equilibrium
distribution has �eq ¼ 3.

Choosing � ¼ 5=4, we prepare the system at an energy
density e ¼ 25=96 � 0:26 slightly above the transition
energy ec in the unmagnetized regime. The time evolution
of the kurtosis � is shown in Fig. 2 (left) for � ¼ 1=8. The
data reveal a relaxation towards the equilibrium value
�eq ¼ 3, on a time scale that depends strongly on the

system size N. Plotting the same data vs rescaled time
t=Nq with q ¼ 1:453, the curves for different N collapse
onto each other, demonstrating the validity of the scaling
law; see Fig. 2 (right). Performing such a scaling analysis
for different values of �, we obtain the scaling exponent q
as a function of � as shown in Fig. 1 (right). The plot
reveals two regimes: For 0 � � � �th with �th � 0:45, q
evolves linearly in � as q � 1:38þ 0:5�. The second
regime, again linear in �, is described by q � 2:5� 2�
for �th � �< 1. This confirms, similar to our findings for
the quantum Ising model, the presence of two distinct

power-law regimes for the relaxation times of the �XY
chain. For �> 1, rescaling of time does not any
longer lead to a data collapse, so either no such scaling
law exists in this regime, or larger system sizes would be
necessary to reach the scaling regime. For other values of
the energy density e, the data collapse is of lesser quality,
but the behavior of qð�Þ is similar to the one shown in
Fig. 1, though with larger fluctuations (see Supplemental
Material C [8] for simulation data and a more detailed
discussion).
Normalization of the energy scale.—In many papers

on long-range interacting systems, the pair-interaction
term in the Hamiltonian is made extensive by equipping
it with an N-dependent normalization factor N . For
the models studied in this Letter, such normalization fac-
tors, as discussed for example in Refs. [7,11,13], behave

as N � N�=d�1 asymptotically for large N when �< d
(while no normalization is required for �> d).
Extensivity of the energy is a prerequisite for a well-
defined thermodynamic limit when making the transition
from equilibrium statistical mechanics to thermodynamics
[3]. Moreover, interesting physical phenomena, like equi-
librium phase transitions, are caused by competition
between energetic and entropic effects, and extensivity of
both these quantities is usually required in order for such a
competition to survive in the thermodynamic limit.
For studying the approach to equilibrium, a normaliza-

tion factor is not necessary, but can be included [16].
An N-dependent prefactor in the energy induces a further
N dependence of the time scale, shifting the scaling expo-
nent q of the relaxation time scale to ~q ¼ qþ ð1� �=dÞ in
quantum dynamics, and to ~q ¼ qþ ð1� �=dÞ=2 in clas-
sical Hamiltonian dynamics. The dependence of the expo-
nent ~q on � is shown in Fig. 3 for the long-range quantum
Ising model and the classical �XY chain. The similarities
between the two models become even more evident in this
plot, with a crossover from a constant regime for �< �th

to a linear regime above the threshold.
In the case of the long-range quantum Ising model, intro-

ducing the normalization factor N has the effect of even
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FIG. 2 (color online). The kurtosis � of the momentum distri-
bution of the �XY chain, plotted for � ¼ 1=8, energy density
e � 0:26, and system sizes N ¼ 256, 512, 1024, 2048, and 4096.
Data are averaged over 128, 64, 32, 16, and 8 realizations,
respectively. Left: As a function of time t, the relaxation time
increases with system size N. Right: As a function of rescaled
time t=Nq with scaling exponent q ¼ 1:453.
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flipping the sign of the exponent, from a negative q to a
positive ~q. This implies that, while the relaxation to
equilibrium takes longer and longer with increasing sys-
tem size in the presence of N , the opposite happens for
the original Hamiltonian: Relaxation speeds up with
increasing N, leading to ‘‘instantaneous’’ equilibration
in the thermodynamic limit. This is different from what
is observed for the �XY chain, where long-lived quasi-
stationary states occur independently of whether the
factor N is present or not.

Discussion of the results.—As illustrated in Figs. 1 and 3,
we find that the exponent q in the scaling law � / Nq of the
relaxation time varies linearly as a function of �, with a
change from one linear regime to another at � ¼ �th.
For the quantum Ising model, �th ¼ d=2 is the exact
location of this change, whereas for the �XY chain we
find an approximate value of �th � 0:45. However, results
on the largest Lyapunov exponent of the �XY model on
d-dimensional lattices [17] support the conjecture that the
exact value of �th is d=2 also in the classical case:
Lyapunov exponents are characteristic quantities for the
time evolution, quantifying in some sense the chaoticity of
the dynamics. The authors of Ref. [17] find that the largest
Lyapunov exponent vanishes like N��, where � changes
from a constant regime for 0<�=d < 1=2 to a linearly
decreasing regime for 1=2<�=d < 1. The qualitative
similarity of �ð�Þ in Fig. 3 of Ref. [17] to the plot of
~qð�Þ in Fig. 3 of the present Letter is striking. At least
sufficiently far from equilibrium, the sum of positive
Lyapunov exponents is known to correspond to an entropy
rate, which in turn provides a link to the speed at which
equilibrium is approached [18]. When the largest term of
that sum switches to a different scaling regime, this change
is expected to reflect also in the sum and, therefore, in
the speed at which the system relaxes to equilibrium.
These arguments suggest that the transition from one
linear regime of qð�Þ to another takes place precisely at
�th ¼ d=2, not only for the quantum Ising model, but also
for the �XY chain, and our numerical results are in good
agreement with this analytical prediction.

Our understanding of the origin of the universality of the
threshold at �th ¼ d=2 is partial at best, but some physical
intuition can be gained from studying Lieb-Robinson-type
bounds on the propagation of perturbations. Hastings and

Koma [19] report such a bound for a broad class of quan-
tum lattice systems with long-range interactions. One
restriction on the interactions (Eq. (2.3) of Ref. [19]) is
essential for obtaining a nontrivial bound, and it roughly
amounts to requiring that

X

k2�

1

ji� kj�
1

jj� kj� <1 (5)

for any given lattice sites i, j 2 �. By integral approxi-
mation one finds that (5) is satisfied for �> d=2, repro-
ducing the threshold value we found for the relaxation
dynamics. This suggests an appealing, though specula-
tive, intuitive explanation: In the regime �> �th, restric-
tions on the speed at which perturbations propagate
(as given by the Lieb-Robinson bound) are responsible
for one type of relaxation behavior, whereas the absence
of such restrictions gives rise to another type of relaxation
in the regime �< �th. However, to turn this intuition into
a proof of the universality of the threshold at �th, impor-
tant pieces are still missing, one of them being a classical
version of the Lieb-Robinson bound for long-range inter-
acting systems.
In summary, substantial analytical as well as numerical

evidence has been found for the existence of a threshold at
�th ¼ d=2 at which dynamical properties of long-range
interacting systems show an abrupt change from one
regime to another. This threshold is found for classical
Hamiltonian as well as quantum dynamics, on lattices of
arbitrary dimension and for various lattice structures, and
for ferromagnetic as well as anti-ferromagnetic interac-
tions. Anecdotal evidence that the same threshold value
is of significance also in random models is reported in
Ref. [20], although here different kinds of randomness
may behave differently and the scenario becomes more
involved [21]. Furthermore, a change of regime can be
observed not only in the relaxation times we have studied
in the present letter, but also in other dynamical quantities,
be it the above-mentioned largest Lyapunov exponents [17]
or the emergence of widely separated time scales of
decaying correlations [10]. Beyond the universality of
the threshold value �th ¼ d=2, it is tempting to conjecture
on the basis of Fig. 3 that also the two linear regimes in
qð�Þ or ~qð�Þ may be model-independent and universal.
Admittedly, this is speculation, and understanding the
origin of the observed universality still poses challenges
for future research. An experimental verification for more
general quantum Ising models (i.e., in the presence of a
transverse magnetic field) should be possible with the ion
trap technology of Ref. [6].
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FIG. 3 (color online). As in Fig. 1, but for scaling exponents ~q
as modified by the presence of an N-dependent prefactor N in
the Hamiltonian. The left plot is for the long-range quantum
Ising model, the right for the classical �XY chain.
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